Collection items available for reproduction, but the Archives Center makes no guarantees concerning copyright restrictions. Other intellectual property rights may apply. Archives Center cost-recovery and use fees may apply when requesting reproductions.
Collection Citation:
Edmund A. Laport Collection, Archives Center, National Museum of American History.
Collection items available for reproduction, but the Archives Center makes no guarantees concerning copyright restrictions. Other intellectual property rights may apply. Archives Center cost-recovery and use fees may apply when requesting reproductions.
Collection Citation:
Harold R. D. Roess Papers, ca. 1920-1964, Archives Center, National Museum of American History
The collection documents in photographs, scrapbooks, notebooks, correspondence, stock ledgers, annual reports, and financial records, the evolution of the telegraph, the development of the Western Union Telegraph Company, and the beginning of the communications revolution. The collection materials describe both the history of the company and of the telegraph industry in general, particularly its importance to the development of the technology in the nineteenth and twentieth centuries. The collection is useful for researchers interested in the development of technology, economic history, and the impact of technology on American social and cultural life.
Scope and Contents:
The collection is divided into twenty-six (26) series and consists of approximately 400 cubic feet. The collection documents in photographs, scrapbooks, notebooks, correspondence, stock ledgers, annual reports, and financial records, the evolution of the telegraph, the development of the Western Union Telegraph Company, and the beginning of the communications revolution. The collection materials describe both the history of the company and of the telegraph industry in general, particularly its importance to the development of the technology in the nineteenth and twentieth centuries. The collection is useful for researchers interested in the development of technology, economic history, and the impact of technology on American social and cultural life.
Arrangement:
The collection is divided into twenty-seven series.
Series 1: Historical and Background Information, 1851-1994
Series 2: Subsidiaries of Western Union, 1844-1986
Series 3: Executive Records, 1848-1987
Series 4: Presidential Letterbooks and Writings, 1865-1911
Series 5: Correspondence, 1837-1985
Series 6: Cyrus W. Field Papers, 1840-1892
Series 7: Secretary's Files, 1844-1987
Series 8: Financial Records, 1859-1995
Series 9: Legal Records, 1867-1968
Series 10: Railroad Records, 1854-1945
Series 11: Law Department Records, 1868-1979
Series 12: Patent Materials, 1840-1970
Series 13: Operating Records, 1868-1970s
Series 14: Westar VI-S, 1974, 1983-1986
Series 15: Engineering Department Records, 1874-1970
Series 16: Plant Department Records, 1867-1937, 1963
Series 17: Superintendent of Supplies Records, 1888-1948
Series 18: Employee/Personnel Records 1852-1985
Series 19: Public Relations Department Records, 1858-1980
Series 20: Western Union Museum, 1913-1971
Series 21: Maps, 1820-1964
Series 22: Telegrams, 1852-1960s
Series 23: Photographs, circa 1870-1980
Series 24: Scrapbooks, 1835-1956
Series 25: Notebooks, 1880-1942
Series 26: Audio Visual Materials, 1925-1994
Series 27: Addenda
Biographical / Historical:
In 1832 Samuel F. B. Morse, assisted by Alfred Vail, conceived of the idea for an electromechanical telegraph, which he called the "Recording Telegraph." This commercial application of electricity was made tangible by their construction of a crude working model in 1835-36. This instrument probably was never used outside of Professor Morse's rooms where it was, however, operated in a number of demonstrations. This original telegraph instrument was in the hands of the Western Union Telegraph Company and had been kept carefully over the years in a glass case. It was moved several times in New York as the Western Union headquarters building changed location over the years. The company presented it to the Smithsonian Institution in 1950.
The telegraph was further refined by Morse, Vail, and a colleague, Leonard Gale, into working mechanical form in 1837. In this year Morse filed a caveat for it at the U.S. Patent Office. Electricity, provided by Joseph Henry's 1836 "intensity batteries", was sent over a wire. The flow of electricity through the wire was interrupted for shorter or longer periods by holding down the key of the device. The resulting dots or dashes were recorded on a printer or could be interpreted orally. In 1838 Morse perfected his sending and receiving code and organized a corporation, making Vail and Gale his partners.
In 1843 Morse received funds from Congress to set-up a demonstration line between Washington and Baltimore. Unfortunately, Morse was not an astute businessman and had no practical plan for constructing a line. After an unsuccessful attempt at laying underground cables with Ezra Cornell, the inventor of a trench digger, Morse switched to the erection of telegraph poles and was more successful. On May 24, 1844, Morse, in the U.S. Supreme Court Chambers in Washington, sent by telegraph the oft-quoted message to his colleague Vail in Baltimore, "What hath God wrought!"
In 1845 Morse hired Andrew Jackson's former postmaster general, Amos Kendall, as his agent in locating potential buyers of the telegraph. Kendall realized the value of the device, and had little trouble convincing others of its potential for profit. By the spring he had attracted a small group of investors. They subscribed $15,000 and formed the Magnetic Telegraph Company. Many new telegraph companies were formed as Morse sold licenses wherever he could.
The first commercial telegraph line was completed between Washington, D.C., and New York City in the spring of 1846 by the Magnetic Telegraph Company. Shortly thereafter, F. O. J. Smith, one of the patent owners, built a line between New York City and Boston. Most of these early companies were licensed by owners of Samuel Morse patents. The Morse messages were sent and received in a code of dots and dashes.
At this time other telegraph systems based on rival technologies were being built. Some companies used the printing telegraph, a device invented by a Vermonter, Royal E. House, whose messages were printed on paper or tape in Roman letters. In 1848 a Scotch scientist, Alexander Bain, received his patents on a telegraph. These were but two of many competing and incompatible technologies that had developed. The result was confusion, inefficiency, and a rash of suits and counter suits.
By 1851 there were over fifty separate telegraph companies operating in the United States. This corporate cornucopia developed because the owners of the telegraph patents had been unsuccessful in convincing the United States and other governments of the invention's potential usefulness. In the private sector, the owners had difficulty convincing capitalists of the commercial value of the invention. This led to the owners' willingness to sell licenses to many purchasers who organized separate companies and then built independent telegraph lines in various sections of the country.
Hiram Sibley moved to Rochester, New York, in 1838 to pursue banking and real estate. Later he was elected sheriff of Monroe County. In Rochester he was introduced to Judge Samuel L. Selden who held the House Telegraph patent rights. In 1849 Selden and Sibley organized the New York State Printing Telegraph Company, but they found it hard to compete with the existing New York, Albany, and Buffalo Telegraph Company.
After this experience Selden suggested that instead of creating a new line, the two should try to acquire all the companies west of Buffalo and unite them into a single unified system. Selden secured an agency for the extension throughout the United States of the House system. In an effort to expand this line west, Judge Selden called on friends and the people in Rochester. This led, in April 1851, to the organization of a company and the filing in Albany of the Articles of Association for the "New York and Mississippi Valley Printing Telegraph Company" (NYMVPTC), a company which later evolved into the Western Union Telegraph Company.
In 1854 there were two rival systems of the NYMVPTC in the West. These two systems consisted of thirteen separate companies. All the companies were using Morse patents in the five states north of the Ohio River. This created a struggle between three separate entities, leading to an unreliable and inefficient telegraph service. The owners of these rival companies eventually decided to invest their money elsewhere and arrangements were made for the NYMVPTC to purchase their interests.
Hiram Sibley recapitalized the company in 1854 under the same name and began a program of construction and acquisition. The most important takeover was carried out by Sibley when he negotiated the purchase of the Morse patent rights for the Midwest for $50,000 from Jeptha H. Wade and John J. Speed, without the knowledge of Ezra Cornell, their partner in the Erie and Michigan Telegraph Company (EMTC). With this acquisition Sibley proceeded to switch to the superior Morse system. He also hired Wade, a very capable manager, who became his protege and later his successor. After a bitter struggle Morse and Wade obtained the EMTC from Cornell in 1855, thus assuring dominance by the NYMVPTC in the Midwest. In 1856 the company name was changed to the "Western Union Telegraph Company," indicating the union of the Western lines into one compact system. In December, 1857, the Company paid stockholders their first dividend.
Between 1857 and 1861 similar consolidations of telegraph companies took place in other areas of the country so that most of the telegraph interests of the United States had merged into six systems. These were the American Telegraph Company (covering the Atlantic and some Gulf states), The Western Union Telegraph Company (covering states North of the Ohio River and parts of Iowa, Kansas, Missouri, and Minnesota), the New York Albany and Buffalo Electro-Magnetic Telegraph Company (covering New York State), the Atlantic and Ohio Telegraph Company (covering Pennsylvania), the Illinois & Mississippi Telegraph Company (covering sections of Missouri, Iowa, and Illinois), and the New Orleans & Ohio Telegraph Company (covering the southern Mississippi Valley and the Southwest). All these companies worked together in a mutually friendly alliance, and other small companies cooperated with the six systems, particularly some on the West Coast.
By the time of the Civil War, there was a strong commercial incentive to construct a telegraph line across the western plains to link the two coasts of America. Many companies, however, believed the line would be impossible to build and maintain.
In 1860 Congress passed, and President James Buchanan signed, the Pacific Telegraph Act, which authorized the Secretary of the Treasury to seek bids for a project to construct a transcontinental line. When two bidders dropped out, Hiram Sibley, representing Western Union, was the only bidder left. By default Sibley won the contract. The Pacific Telegraph Company was organized for the purpose of building the eastern section of the line. Sibley sent Wade to California, where he consolidated the small local companies into the California State Telegraph Company. This entity then organized the Overland Telegraph Company, which handled construction eastward from Carson City, Nevada, joining the existing California lines, to Salt Lake City, Utah. Sibley's Pacific Telegraph Company built westward from Omaha, Nebraska. Sibley put most of his resources into the venture. The line was completed in October, 1861. Both companies were soon merged into Western Union. This accomplishment made Hiram Sibley leader of the telegraph industry.
Further consolidations took place over the next several years. Many companies merged into the American Telegraph Company. With the expiration of the Morse patents, several organizations were combined in 1864 under the name of "The U.S. Telegraph Company." In 1866 the final consolidation took place, with Western Union exchanging stock for the stock of the other two organizations. The general office of Western Union moved at this time from Rochester to 145 Broadway, New York City. In 1875 the main office moved to 195 Broadway, where it remained until 1930 when it relocated to 60 Hudson Street.
In 1873 Western Union purchased a majority of shares in the International Ocean Telegraph Company. This was an important move because it marked Western Union's entry into the foreign telegraph market. Having previously worked with foreign companies, Western Union now began competing for overseas business.
In the late 1870s Western Union, led by William H. Vanderbilt, attempted to wrest control of the major telephone patents, and the new telephone industry, away from the Bell Telephone Company. But due to new Bell leadership and a subsequent hostile takeover attempt of Western Union by Jay Gould, Western Union discontinued its fight and Bell Telephone prevailed.
Despite these corporate calisthenics, Western Union remained in the public eye. The sight of a uniformed Western Union messenger boy was familiar in small towns and big cities all over the country for many years. Some of Western Union's top officials in fact began their careers as messenger boys.
Throughout the remainder of the nineteenth century the telegraph became one of the most important factors in the development of social and commercial life of America. In spite of improvements to the telegraph, however, two new inventions--the telephone (nineteenth century) and the radio (twentieth century)--eventually replaced the telegraph as the leaders of the communication revolution for most Americans.
At the turn of the century, Bell abandoned its struggles to maintain a monopoly through patent suits, and entered into direct competition with the many independent telephone companies. Around this time, the company adopted its new name, the American Telephone and Telegraph Company (AT&T).
In 1908 AT&T gained control of Western Union. This proved beneficial to Western Union, because the companies were able to share lines when needed, and it became possible to order telegrams by telephone. However, it was only possible to order Western Union telegrams, and this hurt the business of Western Union's main competitor, the Postal Telegraph Company. In 1913, however, as part of a move to prevent the government from invoking antitrust laws, AT&T completely separated itself from Western Union.
Western Union continued to prosper and it received commendations from the U.S. armed forces for service during both world wars. In 1945 Western Union finally merged with its longtime rival, the Postal Telegraph Company. As part of that merger, Western Union agreed to separate domestic and foreign business. In 1963 Western Union International Incorporated, a private company completely separate from the Western Union Telegraph Company, was formed and an agreement with the Postal Telegraph Company was completed. In 1994, Western Union Financial Services, Inc. was acquired by First Financial Management Corporation. In 1995, First Financial Management Corporation merged with First Data Corporation making Western Union a First Data subsidiary.
Many technological advancements followed the telegraph's development. The following are among the more important:
The first advancement of the telegraph occurred around 1850 when operators realized that the clicks of the recording instrument portrayed a sound pattern, understandable by the operators as dots and dashes. This allowed the operator to hear the message by ear and simultaneously write it down. This ability transformed the telegraph into a versatile and speedy system.
Duplex Telegraphy, 1871-72, was invented by the president of the Franklin Telegraph Company. Unable to sell his invention to his own company, he found a willing buyer in Western Union. Utilizing this invention, two messages were sent over the wire simultaneously, one in each direction.
As business blossomed and demand surged, new devices appeared. Thomas Edison's Quadruplex allowed four messages to be sent over the same wire simultaneously, two in one direction and two in the other.
An English automatic signaling arrangement, Wheatstone's Automatic Telegraph, 1883, allowed larger numbers of words to be transmitted over a wire at once. It could only be used advantageously, however, on circuits where there was a heavy volume of business.
Buckingham's Machine Telegraph was an improvement on the House system. It printed received messages in plain Roman letters quickly and legibly on a message blank, ready for delivery.
Vibroplex, c. 1890, a semi-automatic key sometimes called a "bug key," made the dots automatically. This relieved the operator of much physical strain.
Related Materials:
Materials in the Archives Center
Additional moving image about Western Union Telegraph Company can be found in the Industry on Parade Collection (AC0507). This includes Cable to Cuba! by Bell Laboratory, AT & T, featuring the cable ship, the C.S. Lord Kelvin, and Communications Centennial! by the Western Union Company.
Materials at Other Organizations
Hagley Museum and Library, Wilmington, Delaware.
Western Union International Records form part of the MCI International, Inc. Records at the First Data Corporation, Greenwood Village, Colorado.
Records of First Data Corporation and its predecessors, including Western Union, First Financial Management Corporation (Atlanta) and First Data Resources (Omaha). Western Union collection supports research of telegraphy and related technologies, and includes company records, annual reports, photographs, print and broadcast advertising, telegraph equipment, and messenger uniforms.
Smithsonian Institution Archives
Western Union Telegraph Expedition, 1865-1867
This collection includes correspondence, mostly to Spencer F. Baird, from members of the Scientific Corps of the Western Union Telegraph Expedition, including Kennicott, Dall, Bannister, and Elliott; copies of reports submitted to divisional chiefs from expedition staff members; newspaper clippings concerning the expedition; copies of notes on natural history taken by Robert Kennicott; and a journal containing meteorological data recorded by Henry M. Bannister from March to August, 1866.
Separated Materials:
Artifacts (apparatus and equipment) were donated to the Division of Information Technology and Society, now known as the Division of Work & Industry, National Museum of American History.
Provenance:
The collection was donated by Western Union in September of 1971.
Restrictions:
Collection is open for research but Series 11 and films are stored off-site. Special arrangements must be made to view some of the audiovisual materials. Contact the Archives Center for information at archivescenter@si.edu or 202-633-3270.
Rights:
Collection items available for reproduction, but the Archives Center makes no guarantees concerning copyright restrictions. Other intellectual property rights may apply. Archives Center cost-recovery and use fees may apply when requesting reproductions.
Scurlock, George H. (Hardison), 1919-2005 Search this
Container:
Box 14
Type:
Archival materials
Date:
1977 March 1
Scope and Contents note:
Job Number: 6694
Subseries Restrictions:
Collection is open for research.
Series 8: Business Records, Subseries 8.1: Studio Session Registers are restricted. Digital copies available for research. See repository for details.
Gloves must be worn when handling unprotected photographs and negatives. Special arrangements required to view negatives due to cold storage. Using negatives requires a three hour waiting period. Contact the Archives Center at 202-633-3270.
Subseries Rights:
When the Museum purchased the collection from the Estate of Robert S. Scurlock, it obtained all rights, including copyright. The earliest photographs in the collection are in the public domain because their term of copyright has expired. The Archives Center will control copyright and the use of the collection for reproduction purposes, which will be handled in accordance with its standard reproduction policy guidelines. Archives Center cost-recovery and use fees may apply when requesting reproductions.
Subseries Citation:
Scurlock Studio Records, Archives Center, National Museum of American History. Smithsonian Institution
Sponsor:
The collection was acquired with assistance from the Eugene Meyer Foundation. Elihu and Susan Rose and the Save America's Treasures program, provided funds to stabilize, organize, store, and create digital surrogates of some of the negatives. Processing and encoding funded by a grant from the Council on Library and Information Resources.
Collection documents the development of the Holter Monitor, a portable device for continuously monitoring heart activity for an extended period, through engineering logbooks, drawings, operator manuals, correspondence, photographs, sales brochures and catalogs, biographical information about the engineering staff who worked on the monitor, patents and trademarks, and marketing and sales materials.
Scope and Contents:
The collection includes engineering logbooks, drawings, operator manuals, correspondence, photographs, sales brochures and catalogs, biographical information about the engineering staff who worked on the monitor, patents and trademarks, and marketing and sales materials documenting the development of the Holter Monitor, a portable device for continuously monitoring heart activity.
The records document the successful collaboration of an independent inventor and a manufacturing firm to identify problems, develop solutions and bring to market diagnostic technologies. Bruce Del Mar's role as an innovator and collaborator with Holter is especially important, because Del Mar's work spurred the development of an entire diagnostic industry. In addition, the records also chronicle how "Holter technology" was affected by progressive technological innovations in the industry, as vacuum tubes were replaced by transistors, as microprocessors gave way to microchips and circuit boards, and as analog recordings were replaced by digital formats.
Documenting manufacturing developments (highs and lows) and marketing considerations is an important element in better understanding the invention process. Del Mar Avionics was the first to design and manufacture instrumentation for long-term monitoring of the human heart for the medical profession. Today, Holter Monitors continue to be an important diagnostic tool for monitoring the health of the heart.
Series 1, Historical Background, 1951-2010 and undated, consists of biographical materials for Bruce Del Mar, founder of Del Mar Avionics, company histories, copies of the Del Mar Avionics newsletter Pacemaker, employee information, newspaper clippings and ephemera, and photographs of some employees. The employee information contains a 1979 handbook, explaining company policies and the benefits of employment with Del Mar Avionics and a 1951 memo detailing overtime working hours for women, presumably from Douglas Aircraft, where Bruce Del Mar was employed.
Series 2, Del Mar Avionics Engineering, 1958-1976, is divided into three subseries, Subseries 1, Correspondence, 1965-1976; Subseries 2, Reports, 1964-1969; and Subseries 3, Drawings, 1958-1968. The documentation consists primarily of correspondence from the engineering department, 1965 to 1976, related to the development, design, budgeting, testing, and marketing of the Holter Monitor. The majority of the documentation is correspondence and is written by engineering staff members, but also included are quotation requests, trip reports, and technical reports. Correspondence between Holter and Del Mar about the development of the Holter Minotor is in Series 6. The drawings, 1958-1968, include six drawings (22" x 34" or smaller) for Avionics Research Products projects (panel assembly, chassis assembly, and battery chargers for model 602), and Electromation Company (degausser single coil).
Series 3, Patents and Trademarks, 1965-2002 and undated, consists of copies of patents by Norman J. Holter, W.E. Mills, and W.E. Thornton, Cliff Sanctuary. and Isaac Raymond Cherry related to the development of the Holter Monitor. Also included are lists of United States patents issued to Del Mar Avionics employees, as well as lists of registered trademarks and activities for Del Mar Avionics and copies of trademarks issued to the company.
Series 4, Product Literature, 1968-2010 and undated, consists of product literature for Del Mar Avionics products and some of its competitors. The product literature for Del Mar Avionics is arranged chronologically by model number, and the competitor literature is arranged alphabetically. All of the product literature is related to medical instrumentation with the exception of the Hydra Set, a precision load positioner which is the only product Del Mar Avionics sells today.
Series 5, Sales, 1967-1985, consists of price lists, price catalogs (both domestic and international) and sales objectives for medical instrumentation sold by Del Mar Avionics.
Series 6, Holter Monitor Materials, 1958-2005 and undated, is divided into three subseries, Subseries 1, Background Materials, 1958-2005 and undated; Subseries 2, Model 445, 1974-1978; and Subseries 3, Model 660, 1967-1978 and undated, and consists of materials documenting the relationship between Norman J. Holter, an inventor, and Del Mar Avionics.
Holter and Wilford R. Glassock were issued United States Patent 3,215,136 on November 2, 1965 for the Electrocardiographic Means. Dr. Eliot Corday introduced Holter to Bruce Del Mar, founder of the Del Mar Avionics Corporation in Irvine, California. Del Mar engineers developed the "electrocardiocorder" for clinical use, producing a commercially viable monitor which came to be known as the Holter Monitor Test. Further refinements led to the creation of a "minimonitor" in 1968 which was described by Holter as being the "size of a cigarette package." Commercial production of the Holter minimonitor, AVSEP, Jr., began in 1969. The Holter Research Foundation ultimately sold exclusive rights to their patents to Del Mar Engineering Laboratories.
The materials include biographical materials about Norman J. Holter, journal articles about the Holter Monitor, correspondence, engineering notebooks, a licensing agreement, product literature, reports, price lists, catalogs, operating manuals and specific information about the Dynamic Del Mar Avionics ElectroCardioCorder (Model 445), 1977, and the ElectroCardioScanner (Model 660), 1971. Both models were developed by Del Mar's medical device manufacturing staff. The licensing agreement and correspondence detail in chronological order the relationship between Norman Holter and Del Mar Avionics, specifically president Bruce Del Mar, in the rapid commercial marketing and development of Holter's electrocardiorecorder. Although Holter assigned exclusive rights to his patent to Del Mar Avionics, he was involved in the design and development process, albeit from a distance. The engineering staff at Del Mar kept Holter informed, and it is clear that Holter regularly visited the company.
The engineering notebooks relate to the models 445 and 660. The notebooks were maintained by engineering staff members D. Anderson, N. Mohammedi, Ray Cherry and Fike. The notebooks are handwritten, although in some instances memos and other information have been inserted. For example, N. Mohammedi's notebook documenting Model 445 contains black-and-white prints, magnetic tape samples, and recorder tape (EKG graph paper) samples with data from the monitor. The notebooks are bound and paginated, and individual pages are stamped sequentially.
Series 7, Slides, circa 1990s, consists of color slides used for presentations by Del Mar Avionics staff to discuss and promote the marketing of the Holter Monitor.
Arrangement:
The collection is arranged into seven series.
Series 1, Historical Background, 1951-2010 and undated
Series 2, Del Mar Avionics Engineering, 1958-1976
Subseries 1, Correspondence, 1965-1976
Subseries 2, Reports, 1964-1969
Subseries 3, Drawings, 1958-1968
Series 3, Patents and Trademarks, 1965-2002 and undated
Series 4, Product Literature, 1968-2010 and undated
Subseries 1, Del Mar Avionics, 1968-2010 and undated
Subseries 2, Competitors, 1974 and undated
Series 5, Sales, 1967-1985
Series 6, Holter Monitor Materials, 1958-2005
Subseries 1, Background Materials, 1958-2005
Subseries 2, Model 445, 1974-1978
Subseries 3, Model 660, 1967-1978 and undated
Series 7, Slides, circa 1990s
Biographical / Historical:
Norman Jefferis "Jeff" Holter (1914-1983) was born in Helena, Montana, to a prominent Montana pioneering family. After attending public schools in Helena, he earned master's degrees in chemistry from the University of Southern California (1938) and physics from the University of California, Los Angeles (1940). During these years Holter also organized Applied Micro Sciences, a scientific photography business, and began working with Dr. Joseph A. Gengerelli of UCLA on nerve stimulation in frogs and brain stimulation in rats. Holter's interest in studying electrical activity in humans in their daily activities without touching them, spawned his lifelong pursuit to develop the Holter Monitor.
During World War Two, Holter served as a senior physicist for the U.S. Navy's Bureau of Ships, conducting research into the behavior of ocean waves in preparation for wartime amphibious operations. After the war, in 1946, Holter headed a staff of oceanographic engineers at Bikini Atoll during Operation Crossroads, the first postwar atomic bomb tests, measuring wave actions and underwater disturbances caused by the explosions.
Because of demands of his family's business affairs, Holter returned to Helena in 1947 to continue his research activities. In 1947 he formed the Holter Research Foundation, with a laboratory originally located in the rear of the Holter Hardware Company building. From 1956 to 1971 the laboratory facilities were located in the Great Northern Railroad depot building in Helena. The foundation was initially funded by Holter and other members of his family, but in 1952 Holter began to receive grants from the National Institutes of Health (NIH).
Holter continued his collaboration with Dr. Gengerelli of UCLA in attempting to transmit information, primarily brain waves, by radio. Holter turned his attention from the brain to the heart because the heart's greater voltage made the electronics easier, and because heart disease was far more prevalent than cerebral disease. Holter's introduction to Dr. Paul Dudley White (1886-1973), a renowned physician and cardiologist, helped convince him to focus his research on recording electrical activity from the heart. Holter's goal was to radio broadcast and record the more obvious electrophysiological phenomena occurring in humans while carrying on their normal activities, rather than having to lie quietly on a couch.
The first broadcast of a radioelectrocardiogram (RECG) took place circa 1947 and required eighty to eighty-five pounds of equipment, which Holter worn on his back while riding a stationary bicycle. This was not practical and in no way could be worn by a patient. The initial transmitter and receiver required that the subject remain in the general area of the laboratory, so a portable and lighter RECG receiver-recorder had to be developed.
Next, Holter created a briefcase-like device that could be carried by a patient. By using very thin magnetic recording tape, twenty-four hours of RECG could be captured on a reel five inches in diameter. The initial method of examining the voluminous records from the tape recordings developed by Holter was called Audio-Visual Superimposed ECG Presentation (AVSEP). AVSEP made it possible to examine twenty-four hours of RECGs in twenty minutes, with signals being presented visually on an oscilloscope and audibly through a speaker.
With the development of transistors, radioelectrocardiography was made obsolete, and it became possible for the amplifier, tape recorder, temperature-control circuits, motor speed control circuits, and batteries to be placed in a single unit small enough for a coat pocket or purse. In 1952, Holter succeeded in creating a small unit that weighed 1 kilogram. Wilford R. Glassock, a senior engineer working with Holter, traveled to Cedars of Lebanon Hospital (now Cedars-Sinai Hospital of Los Angeles) in 1962 to demonstrate the Holter monitor system and discuss making it more practical. At Cedars, Dr. Eliot Corday observed the practicality of the system and not only embraced the technology, but collaborated with Holter's team and was an early promoter of the technology to both industry and physicians. Holter and Glassock were issued US Patent 3,215,136 on November 2, 1965 for the Electrocardiographic Means.
As articles describing the foundation's invention of these devices began to appear in the professional literature, there was considerable demand from doctors and hospitals for the equipment. Dr. Corday introduced Holter to Bruce Del Mar, founder of the Del Mar Avionics Corporation in Irvine, California. Del Mar engineers developed the "electrocardiocorder" for clinical use, producing a commercially viable monitor which came to be known as the Holter Monitor Test. Further refinements led to the creation of a "minimonitor" in 1968, which was described by Holter as being the "size of a cigarette package." Commercial production of the Holter minimonitor, AVSEP, Jr., began in 1969. The Holter Research Foundation ultimately sold exclusive rights to their patents to Del Mar Engineering Laboratories.
Later known as Del Mar Avionics, a team of engineers diverted their attention from successful manufacturing of military weapons training devices to focus on improving the speed and accuracy of computerized ECG analysis and they became the acknowledged leader in Holter monitoring technology for over 40 years. In 1969, because of the increased amount of required paper work and red tape, Holter canceled the grant funding his foundation had been receiving from NIH. He was also in constant conflict with the Internal Revenue Service over the foundation's non-profit status, rights to patents, and commercial production of equipment. The foundation continued to maintain a laboratory and conduct varied scientific work, but on a much smaller scale. The Holter Research Foundation, Inc. was dissolved in 1985, two years after Holter's death.
Del Mar Avionics was founded on January 9, 1952, as Del Mar Engineering Laboratories in Los Angeles, California by Bruce Del Mar, who led the development of aircraft cabin pressurization systems. Del Mar was born in Pasadena, California in 1913. An engineer, inventor, entrepreneur and businessman, Del Mar graduated from the University of California, Berkeley (1937) with a Bachelor of Science degree. Del Mar worked for Douglas Aircraft (1933-1951) as a research engineer on many projects before founding Del Mar Engineering Laboratories. In 1938, Del Mar married Mary Van Ness. The couple had two daughters, Patrica Jean Parsons and Marna Belle Schnabel.
In 1958, Del Mar formed a wholly-owned subsidiary, Electromation Inc., which manufactured tape recording and communication equipment. He later established, Aeroplastics Corporation to manufacture plastic products and Avionics Research Products Corporation to develop and produce biomedical instrumentation. By the mid-1960s, the company had become a leading U.S. Defense Department prime contractor in the development and production of aerial tow target systems for weapons training and instrumented ground targets for scoring air-to-ground automatic weapons delivery. It also produced helicopter target drones and helicopter flight trainers for the U.S. Army.
In 1961, the company entered the growing medical instrumentation market with the development of the first long-term ambulatory monitoring systems.
In 1965, the company introduced the Hydra Set Load Positioner that controls the precise vertical positioning of loads up to 300 tons (272,000 kg) in increments as small as 0.001 inch (0.025mm). This unique product, mounted between the load and the crane (or hoist), permits precise mating and de-mating of critical components, thus eliminating unforeseen damage to valuable loads. Hydra Set Load Positioners are in use worldwide in the aerospace, military/commercial aviation, nuclear and fossil fuel power generating industries and in various industrial applications. In 1975, the company, then re-named Del Mar Avionics, moved to its current location in Irvine, California.
Related Materials:
Materials in the Archives Center
Project Bionics Artificial Organ Documentation Collection [videotapes], 2002 (AC0841) documents the invention and development of artificial internal organs through oral history interviews with scientists and others involved.
The James A. E. Halkett and Sigmund A. Wesolowski, M.D., Papers, 1948-1951 (AC0200) documents Halkett and Wesolowski's experiments on an early mechanical heart. Halkett and Wesolow(ski) materials show the process of technological innovation through laboratory protocols.
The George Edward Burch Papers, 1984-1986 (AC0316) documents Burch's pioneering work in clinical cardiology and research through technical notes, diagrams, and correspondence regarding laboratory work on the "2-pump heart model," 1984-1986.
Wilson Greatbatch Innovative Lives Presentation, 1996 (AC0601) documents the invention of the implantable cardiac pacemaker in 1958.
The Ronald J. Leonard Papers, circa 1980-1997 (AC1109) documents Leonard's development of pumps and oxygenators used in cardio-pulmonary bypass surgery.
Materials in the Division of Medicine and Science, National Museum of American History
The Division of Medicine and Science (now Division of Medicine and Science) holds two monitors: the Dynamic and the Del Mar Avionics ElectroCardioCorder (Model 445), 1977 and the ElectroCardioScanner (Model 660), 1971. Both were developed by Del Mar's Medical Device Manufacturing staff. See accession #: 2011.0196.
Materials at the Montana Historical Society Research Center, Archives
Holter Family papers, 1861-1968
Includes documentation about the Holter Research Foundation, Inc.
Holter Research Foundation, Inc. records, 1914-1985
The Holter Research Foundation, Inc. was a private, non-profit, scientific research foundation started in Helena, Montana, in 1947 by Norman J. "Jeff" Holter. Records (1914-1985) include correspondence, financial records, laboratory records, subject files, photographs, etc. Also included are subgroups for N.J. Holter; his work in the U.S. Navy on bombs and waves; his work as assistant chancellor at University of California, San Diego; and the Society of Nuclear Medicine.
Provenance:
The collection was donated by Del Mar Avionics through Bruce Del Mar, President on September 12, 2011.
Restrictions:
Collection is open for research but is stored off-site and special arrangements must be made to work with it. Contact the Archives Center for information at archivescenter@si.edu or 202-633-3270.
Rights:
Collection items available for reproduction, but the Archives Center makes no guarantees concerning intellectual property rights. Archives Center cost-recovery and use fees may apply when requesting reproductions.
Synopsis of Air Force radio communication equipment.
Collection Creator:
United States. Army. Ordnance Department. Ordnance Research and Development Translation Center Search this
Container:
Roll 36, Item FE 792
Type:
Archival materials
Microform
Collection Restrictions:
No restrictions on access.
Collection Rights:
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests
Collection Citation:
Captured German Documents (World War II): Fort Eustis Library (FE) Microfilm, Acc. NASM.XXXX.0468, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Sally K. Ride Papers, Acc. 2014-0025, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
The subject reference files of Revista Aérea Latinoamericana regarding aviation in Latin America during 1937-2003.
Scope and Content Note:
This collection consists of reference files from the Spanish-language monthly periodical Revista Aérea Latinoamericana. This collection is a virtual time-capsule of the evolution of aviation in Latin America over the 66-year period of publication, 1937-2003. The files include information on hardware and aircraft systems, as well as documentation on aeronautical educational enterprises in Latin America, aero clubs, sport aviation, military and naval aviation, indigenous manufacturing enterprises, and air transport. The material in the collection includes black-and-white and color photographs; color slides; domestic and foreign aerospace trade literature; speeches and lectures; news releases; and drawings.
Arrangement:
The collection is organized by subject and designated in parallel to the NASM Archives' Technical Reference Files as follows:
Series A: -- Aircraft (Boxes 1-86; aircraft / lighter-than-air; each section by manufacturer and model)
Series B: -- Propulsion (Boxes 87-101; engines / other propulsion equipment, each section by manufacturer and model)
Series C: -- Biography (Boxes 102-111; by name, last name first)
Series D: -- Organizations (Box 112; by name)
Series E: -- Corporations (Boxes 113-133; by name)
Series F1: -- Airlines (Boxes 134-135; by name)
Series F4: -- Airports (Boxes 136; by name)
Series G: -- Electronics and Communications (Boxes 137-143; navigation equipment / radar systems / communications equipment; each section by manufacturer and model)
Series H: -- Education (Boxes 144-145; by name)
Series J1: -- Events (Box 146; airshows and exhibits; by name)
Series J2: -- Events (Box 146; flights; by name)
Series K: -- Awards (Box 146; by name)
Series M: -- Equipment (Box 147; by manufacturer and model)
Series O: -- Space History (Box 148-150; spacecraft and systems / UAVs; by manufacturer and model)
Series P: -- General Aviation (Box 151; by country)
Series R: -- Art and Literature (Box 151; by country)
Series S: -- Military (Box 152; by country)
Series S2: -- Armament (Box 153-154; by manufacturer and model)
Series U: -- Museums (Box 155; by country)
Series Y: -- Misccellaneous (Box 155)
Series Y1: -- Miscellaneous National History (Box 155)
Series Y3: -- Miscellaneous Photography (Box 155)
Historical Note:
Revista Aérea Latinoamericana was created in 1937 as a Spanish-language version of the highly regarded US monthly Aero Digest aimed at the Latin American market. This region was seen as a rich potential market for export sales of aircraft, engines, and associated technology, and advertisers came to rely heavily on this publication to help promote their line in this lucrative market. When Aero Digest ceased publication in 1956 Colombian businessman Maximillian Garavito purchased Revista Aérea Latinoamericana and took over as editor and publisher. Upon his death in 1979 Elaine Asch-Root assumed control, dropping "Latinoamericana" from the title and expanding into the Spanish and Portugeuse markets. In 2010 Revista Aérea began publishing a Portugeuse language edition as well as a revamped on-line version. In addition to its original role of communicating the latest in aviation technology to potential buyers, the magazine also highlights aviation-related news and events in Latin America and promotes aviation education and humanitarian aviation operations.
Provenance:
Elaine Asch-Root, gift, 2003, 2003-0028
Restrictions:
No restrictions on access.
Rights:
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.
Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application for Permission to Reproduce NASM Material, available at Permissions Requests.
Collection Citation:
Revista Aérea Collection Collection, Acc. 2003-0028, National Air and Space Museum, Smithsonian Institution.