Skip to main content
New Search
Gallery
Transcription
Items on Exhibit
Browse
Tutorial
About
History
My Lists
Search this Site
Search
Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
Record Link
Print
Share
Facebook
Twitter
Email
Contact Info
Catalog Data
Author:
Zhong, Weishun
Search this
Gold, Jacob M.
Search this
Marzen, Sarah
Search this
England, Jeremy L.
Search this
Yunger Halpern, Nicole
Search this
Object Type:
Smithsonian staff publication
Year:
2021
Citation:
Zhong, Weishun, Gold, Jacob M., Marzen, Sarah, England, Jeremy L., and Yunger Halpern, Nicole. 2021. "
Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
."
Scientific Reports
, 11 9333.
https://doi.org/10.1038/s41598-021-88311-7
.
Identifier:
164182
DOI:
https://doi.org/10.1038/s41598-021-88311-7
ISSN:
2045-2322
Data source:
Smithsonian Libraries and Archives
EDAN-URL:
edanmdm:slasro_164182