Skip to main content Smithsonian Institution

A Global Inventory of Ice-Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere

Catalog Data

Author:
Schmidt, B. E.  Search this
Crown, D. A.  Search this
Sori, M. M.  Search this
Schorghofer, N.  Search this
Williams, D. A.  Search this
Raymond, C. A.  Search this
Bland, M. T.  Search this
Berman, D. C.  Search this
Thangjam, G.  Search this
Marchi, S.  Search this
Hughson, K. H. G.  Search this
Nathues, A.  Search this
Nass, A.  Search this
Prettyman, T. H.  Search this
Platz, T.  Search this
Russell, C. T.  Search this
Castillo-Rogez, J. C.  Search this
Quick, L. C.  Search this
Buczkowski, D. A.  Search this
Chilton, H. T.  Search this
Neesemann, A.  Search this
Otto, K. A.  Search this
Duarte, K.  Search this
Scully, J. E. C.  Search this
Landis, M. E.  Search this
Mest, S. C.  Search this
De Sanctis, M. C.  Search this
Schenk, P.  Search this
Ahrens, C.  Search this
Sizemore, H. G.  Search this
Object Type:
Smithsonian staff publication
Electronic document
Year:
2019
Abstract:
We present a comprehensive global catalog of the geomorphological features with clear or potential relevance to subsurface ice identified during the Dawn spacecraft's primary and first extended missions at Ceres. We define eight broad feature classes and describe analyses supporting their genetic links to subsurface ice. These classes include relaxed craters; central pit craters; large domes; small mounds; lobate landslides and ejecta; pitted materials; depressions and scarps; and fractures, grooves, and channels. Features in all classes are widely distributed on the dwarf planet, consistent with multiple lines of observational evidence that ice is a key component of Ceres' crust. Independent analyses of multiple feature types suggest rheological and compositional layering may be common in the upper similar to 10 km of the crust. Clustering of features indicates that ice concentration is heterogeneous on nearly all length scales, from similar to 1 km to hundreds of kilometers. Impacts are likely the key driver of heterogeneity, causing progressive devolatilization of the low latitude and midlatitude crust on billion-year timescales but also producing localized enhancements in near surface ice content via excavation of deep ice-rich material and possible facilitation of cryomagmatic and cryovolcanic activity. Impacts and landslides may be the dominant mechanism for ice loss on modern Ceres. Our analysis suggests specific locations where future high-resolution imaging can be used to probe (1) current volatile loss rates and (2) the history of putative cryomagmatic and cryovolcanic features. The Cerean cryosphere and its unique morphology promise to be a rich subject of ongoing research for years to come.
Doi:
10.1029/2018JE005699
Citation:
Sizemore, H. G., Schmidt, B. E., Buczkowski, D. A., Sori, M. M., Castillo-Rogez, J. C., Berman, D. C., Ahrens, C., Chilton, H. T., Hughson, K. H. G., Duarte, K., Otto, K. A., Bland, M. T., Neesemann, A., Scully, J. E. C., Crown, D. A., Mest, S. C., Williams, D. A., Platz, T., Schenk, P., Landis, M. E., Marchi, S., Schorghofer, N., Quick, L. C., Prettyman, T. H., De Sanctis, M. C., et al. 2019. A Global Inventory of Ice-Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. <i>Journal of Geophysical Research-Planets<i>, 124(7): 1650-1689. doi:10.1029/2018JE005699
Topic:
Flight  Search this
Aeronautics  Search this
Space sciences  Search this
Flight  Search this
Data source:
Smithsonian Libraries
EDAN-URL:
edanmdm:SILSRO_152194